OneHotEncoder¶
One-hot encoding.
This transformer will encode every feature it is provided with. If a list or set is provided, this transformer will encode every entry in the list/set. You can apply it to a subset of features by composing it with compose.Select
or compose.SelectType
.
Parameters¶
-
drop_zeros
Default →
False
Whether or not 0s should be made explicit or not.
-
drop_first
Default →
False
Whether to get
k - 1
dummies out ofk
categorical levels by removing the first key. This is useful in some statistical models where perfectly collinear features cause problems.
Examples¶
Let us first create an example dataset.
from pprint import pprint
import random
import string
random.seed(42)
alphabet = list(string.ascii_lowercase)
X = [
{
'c1': random.choice(alphabet),
'c2': random.choice(alphabet),
}
for _ in range(4)
]
pprint(X)
[{'c1': 'u', 'c2': 'd'},
{'c1': 'a', 'c2': 'x'},
{'c1': 'i', 'c2': 'h'},
{'c1': 'h', 'c2': 'e'}]
e can now apply one-hot encoding. All the provided are one-hot encoded, there is therefore no need to specify which features to encode.
from river import preprocessing
oh = preprocessing.OneHotEncoder()
for x in X[:2]:
oh = oh.learn_one(x)
pprint(oh.transform_one(x))
{'c1_u': 1, 'c2_d': 1}
{'c1_a': 1, 'c1_u': 0, 'c2_d': 0, 'c2_x': 1}
The drop_zeros
parameter can be set to True
if you don't want the past features to be included
in the output. Otherwise, all the past features will be included in the output.
oh = preprocessing.OneHotEncoder(drop_zeros=True)
for x in X:
oh = oh.learn_one(x)
pprint(oh.transform_one(x))
{'c1_u': 1, 'c2_d': 1}
{'c1_a': 1, 'c2_x': 1}
{'c1_i': 1, 'c2_h': 1}
{'c1_h': 1, 'c2_e': 1}
You can encode only k - 1
features out of k
by setting drop_first
to True
.
oh = preprocessing.OneHotEncoder(drop_first=True, drop_zeros=True)
for x in X:
oh = oh.learn_one(x)
pprint(oh.transform_one(x))
{'c2_d': 1}
{'c2_x': 1}
{'c2_h': 1}
{'c2_e': 1}
A subset of the features can be one-hot encoded by piping a compose.Select
into the
OneHotEncoder
.
from river import compose
pp = compose.Select('c1') | preprocessing.OneHotEncoder()
for x in X:
pp = pp.learn_one(x)
pprint(pp.transform_one(x))
{'c1_u': 1}
{'c1_a': 1, 'c1_u': 0}
{'c1_a': 0, 'c1_i': 1, 'c1_u': 0}
{'c1_a': 0, 'c1_h': 1, 'c1_i': 0, 'c1_u': 0}
You can preserve the c2
feature by using a union:
pp = compose.Select('c1') | preprocessing.OneHotEncoder()
pp += compose.Select('c2')
for x in X:
pp = pp.learn_one(x)
pprint(pp.transform_one(x))
{'c1_u': 1, 'c2': 'd'}
{'c1_a': 1, 'c1_u': 0, 'c2': 'x'}
{'c1_a': 0, 'c1_i': 1, 'c1_u': 0, 'c2': 'h'}
{'c1_a': 0, 'c1_h': 1, 'c1_i': 0, 'c1_u': 0, 'c2': 'e'}
Similar to the above examples, we can also pass values as a list. This will one-hot encode all of the entries individually.
X = [{'c1': ['u', 'a'], 'c2': ['d']},
{'c1': ['a', 'b'], 'c2': ['x']},
{'c1': ['i'], 'c2': ['h', 'z']},
{'c1': ['h', 'b'], 'c2': ['e']}]
oh = preprocessing.OneHotEncoder(drop_zeros=True)
for x in X:
oh = oh.learn_one(x)
pprint(oh.transform_one(x))
{'c1_a': 1, 'c1_u': 1, 'c2_d': 1}
{'c1_a': 1, 'c1_b': 1, 'c2_x': 1}
{'c1_i': 1, 'c2_h': 1, 'c2_z': 1}
{'c1_b': 1, 'c1_h': 1, 'c2_e': 1}
Processing mini-batches is also possible.
from pprint import pprint
import random
import string
random.seed(42)
alphabet = list(string.ascii_lowercase)
X = pd.DataFrame(
{
'c1': random.choice(alphabet),
'c2': random.choice(alphabet),
}
for _ in range(3)
)
X
c1 c2
0 u d
1 a x
2 i h
oh = preprocessing.OneHotEncoder(drop_zeros=True)
df = oh.transform_many(X)
df.sort_index(axis="columns")
c1_a c1_i c1_u c2_d c2_h c2_x
0 0 0 1 1 0 0
1 1 0 0 0 0 1
2 0 1 0 0 1 0
oh = preprocessing.OneHotEncoder(drop_zeros=True, drop_first=True)
df = oh.transform_many(X)
df.sort_index(axis="columns")
c1_i c1_u c2_d c2_h c2_x
0 0 1 1 0 0
1 0 0 0 0 1
2 1 0 0 1 0
Here's an example where the zeros are kept:
oh = preprocessing.OneHotEncoder(drop_zeros=False)
X_init = pd.DataFrame([{"c1": "Oranges", "c2": "Apples"}])
oh = oh.learn_many(X_init)
oh = oh.learn_many(X)
df = oh.transform_many(X)
df.sort_index(axis="columns")
c1_Oranges c1_a c1_i c1_u c2_Apples c2_d c2_h c2_x
0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0 1
2 0 0 1 0 0 0 1 0
df.dtypes.sort_index()
c1_Oranges Sparse[uint8, 0]
c1_a Sparse[uint8, 0]
c1_i Sparse[uint8, 0]
c1_u Sparse[uint8, 0]
c2_Apples Sparse[uint8, 0]
c2_d Sparse[uint8, 0]
c2_h Sparse[uint8, 0]
c2_x Sparse[uint8, 0]
dtype: object
Methods¶
learn_many
Update with a mini-batch of features.
A lot of transformers don't actually have to do anything during the learn_many
step because they are stateless. For this reason the default behavior of this function is to do nothing. Transformers that however do something during the learn_many
can override this method.
Parameters
- X — 'pd.DataFrame'
Returns
Transformer: self
learn_one
Update with a set of features x
.
A lot of transformers don't actually have to do anything during the learn_one
step because they are stateless. For this reason the default behavior of this function is to do nothing. Transformers that however do something during the learn_one
can override this method.
Parameters
- x — 'dict'
Returns
Transformer: self
transform_many
Transform a mini-batch of features.
Parameters
- X — 'pd.DataFrame'
Returns
pd.DataFrame: A new DataFrame.
transform_one
Transform a set of features x
.
Parameters
- x — 'dict'
- y — defaults to
None
Returns
dict: The transformed values.