Baseline¶
Baseline for recommender systems.
A first-order approximation of the bias involved in target. The model equation is defined as:
Where \(bu_{u}\) and \(bi_{i}\) are respectively the user and item biases.
This model expects a dict input with a user
and an item
entries without any type constraint on their values (i.e. can be strings or numbers). Other entries are ignored.
Parameters¶
-
optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the weights.
-
loss
Type → optim.losses.Loss | None
Default →
None
The loss function to optimize for.
-
l2
Default →
0.0
regularization amount used to push weights towards 0.
-
initializer
Type → optim.initializers.Initializer | None
Default →
None
Weights initialization scheme.
-
clip_gradient
Default →
1000000000000.0
Clips the absolute value of each gradient value.
-
seed
Default →
None
Random number generation seed. Set this for reproducibility.
Attributes¶
-
global_mean (stats.Mean)
The target arithmetic mean.
-
u_biases (collections.defaultdict)
The user bias weights.
-
i_biases (collections.defaultdict)
The item bias weights.
-
u_optimizer (optim.base.Optimizer)
The sequential optimizer used for updating the user bias weights.
-
i_optimizer (optim.base.Optimizer)
The sequential optimizer used for updating the item bias weights.
Examples¶
from river import optim
from river import reco
dataset = (
({'user': 'Alice', 'item': 'Superman'}, 8),
({'user': 'Alice', 'item': 'Terminator'}, 9),
({'user': 'Alice', 'item': 'Star Wars'}, 8),
({'user': 'Alice', 'item': 'Notting Hill'}, 2),
({'user': 'Alice', 'item': 'Harry Potter'}, 5),
({'user': 'Bob', 'item': 'Superman'}, 8),
({'user': 'Bob', 'item': 'Terminator'}, 9),
({'user': 'Bob', 'item': 'Star Wars'}, 8),
({'user': 'Bob', 'item': 'Notting Hill'}, 2)
)
model = reco.Baseline(optimizer=optim.SGD(0.005))
for x, y in dataset:
_ = model.learn_one(**x, y=y)
model.predict_one(user='Bob', item='Harry Potter')
6.538120
Methods¶
learn_one
Fits a user
-item
pair and a real-valued target y
.
Parameters
- user — 'ID'
- item — 'ID'
- y — 'Reward'
- x — 'dict | None' — defaults to
None
predict_one
Predicts the target value of a set of features x
.
Parameters
- user — 'ID'
- item — 'ID'
- x — 'dict | None' — defaults to
None
Returns
Reward: The predicted preference from the user for the item.
rank
Rank models by decreasing order of preference for a given user.
Parameters
- user — 'ID'
- items — 'set[ID]'
- x — 'dict | None' — defaults to
None