SKL2RiverRegressor¶
Compatibility layer from scikit-learn to River for regression.
Parameters¶
-
estimator
Type → sklearn_base.BaseEstimator
A scikit-learn transformer which has a
partial_fit
method.
Examples¶
from river import compat
from river import evaluate
from river import metrics
from river import preprocessing
from river import stream
from sklearn import linear_model
from sklearn import datasets
dataset = stream.iter_sklearn_dataset(
dataset=datasets.load_diabetes(),
shuffle=True,
seed=42
)
scaler = preprocessing.StandardScaler()
sgd_reg = compat.convert_sklearn_to_river(linear_model.SGDRegressor())
model = scaler | sgd_reg
metric = metrics.MAE()
evaluate.progressive_val_score(dataset, model, metric)
MAE: 84.501421
Methods¶
learn_many
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x
- y
Returns
self
predict_many
predict_one
Predict the output of features x
.
Parameters
- x
Returns
The prediction.