FFMRegressor¶
Field-aware Factorization Machine for regression.
The model equation is defined by:
Where \(\mathbf{v}_{j, f_{j'}}\) is the latent vector corresponding to \(j\) feature for \(f_{j'}\) field, and \(\mathbf{v}_{j', f_j}\) is the latent vector corresponding to \(j'\) feature for \(f_j\) field.
For more efficiency, this model automatically one-hot encodes strings features considering them as categorical variables. Field names are inferred from feature names by taking everything before the first underscore: feature_name.split('_')[0]
.
Parameters¶
-
n_factors
Default →
10
Dimensionality of the factorization or number of latent factors.
-
weight_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the feature weights. Note that the intercept is handled separately.
-
latent_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the latent factors.
-
loss
Type → optim.losses.RegressionLoss | None
Default →
None
The loss function to optimize for.
-
sample_normalization
Default →
False
Whether to divide each element of
x
byx
's L2-norm. -
l1_weight
Default →
0.0
Amount of L1 regularization used to push weights towards 0.
-
l2_weight
Default →
0.0
Amount of L2 regularization used to push weights towards 0.
-
l1_latent
Default →
0.0
Amount of L1 regularization used to push latent weights towards 0.
-
l2_latent
Default →
0.0
Amount of L2 regularization used to push latent weights towards 0.
-
intercept
Default →
0.0
Initial intercept value.
-
intercept_lr
Type → optim.base.Scheduler | float
Default →
0.01
Learning rate scheduler used for updating the intercept. An instance of
optim.schedulers.Constant
is used if afloat
is passed. No intercept will be used if this is set to 0. -
weight_initializer
Type → optim.initializers.Initializer | None
Default →
None
Weights initialization scheme. Defaults to
optim.initializers.Zeros
()`. -
latent_initializer
Type → optim.initializers.Initializer | None
Default →
None
Latent factors initialization scheme. Defaults to
optim.initializers.Normal
(mu=.0, sigma=.1, random_state=self.random_state)`. -
clip_gradient
Default →
1000000000000.0
Clips the absolute value of each gradient value.
-
seed
Type → int | None
Default →
None
Randomization seed used for reproducibility.
Attributes¶
-
weights
The current weights assigned to the features.
-
latents
The current latent weights assigned to the features.
Examples¶
from river import facto
dataset = (
({'user': 'Alice', 'item': 'Superman', 'time': .12}, 8),
({'user': 'Alice', 'item': 'Terminator', 'time': .13}, 9),
({'user': 'Alice', 'item': 'Star Wars', 'time': .14}, 8),
({'user': 'Alice', 'item': 'Notting Hill', 'time': .15}, 2),
({'user': 'Alice', 'item': 'Harry Potter ', 'time': .16}, 5),
({'user': 'Bob', 'item': 'Superman', 'time': .13}, 8),
({'user': 'Bob', 'item': 'Terminator', 'time': .12}, 9),
({'user': 'Bob', 'item': 'Star Wars', 'time': .16}, 8),
({'user': 'Bob', 'item': 'Notting Hill', 'time': .10}, 2)
)
model = facto.FFMRegressor(
n_factors=10,
intercept=5,
seed=42,
)
for x, y in dataset:
model = model.learn_one(x, y)
model.predict_one({'user': 'Bob', 'item': 'Harry Potter', 'time': .14})
5.319945
report = model.debug_one({'user': 'Bob', 'item': 'Harry Potter', 'time': .14})
print(report)
Name Value Weight Contribution
Intercept 1.00000 5.23501 5.23501
user_Bob 1.00000 0.11438 0.11438
time 0.14000 0.03186 0.00446
item_Harry Potter(time) - time(item) 0.14000 0.03153 0.00441
user_Bob(time) - time(user) 0.14000 0.02864 0.00401
item_Harry Potter 1.00000 0.00000 0.00000
user_Bob(item) - item_Harry Potter(user) 1.00000 -0.04232 -0.04232
Methods¶
debug_one
Debugs the output of the FM regressor.
Parameters
- x — 'dict'
- decimals — 'int' — defaults to
5
Returns
str: A table which explains the output.
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x — 'dict'
- y — 'base.typing.RegTarget'
- sample_weight — defaults to
1.0
Returns
Regressor: self
predict_one
Predict the output of features x
.
Parameters
- x
Returns
The prediction.