Skip to content

WeightedFBeta

Weighted-average F-Beta score.

This works by computing the F-Beta score per class, and then performs a global weighted average according to the support of each class.

Parameters

  • beta

    Weight of precision in the harmonic mean.

  • cm

    DefaultNone

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

    Indicates if labels are required, rather than probabilities.

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Examples

from river import metrics

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]

metric = metrics.WeightedFBeta(beta=0.8)

for yt, yp in zip(y_true, y_pred):
    print(metric.update(yt, yp))
WeightedFBeta: 100.00%
WeightedFBeta: 31.06%
WeightedFBeta: 54.04%
WeightedFBeta: 65.53%
WeightedFBeta: 62.63%

Methods

get

Return the current value of the metric.

is_better_than

Indicate if the current metric is better than another one.

Parameters

  • other

revert

Revert the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight — defaults to 1.0

update

Update the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight — defaults to 1.0

works_with

Indicates whether or not a metric can work with a given model.

Parameters