RegressorChain¶
A multi-output model that arranges regressors into a chain.
This will create one model per output. The prediction of the first output will be used as a feature in the second output. The prediction for the second output will be used as a feature for the third, etc. This "chain model" is therefore capable of capturing dependencies between outputs.
Parameters¶
-
model
Type → base.Regressor
The regression model used to make predictions for each target.
-
order
Type → list | None
Default →
None
A list with the targets order in which to construct the chain. If
None
then the order will be inferred from the order of the keys in the target.
Examples¶
from river import evaluate
from river import linear_model
from river import metrics
from river import multioutput
from river import preprocessing
from river import stream
from sklearn import datasets
dataset = stream.iter_sklearn_dataset(
dataset=datasets.load_linnerud(),
shuffle=True,
seed=42
)
model = multioutput.RegressorChain(
model=(
preprocessing.StandardScaler() |
linear_model.LinearRegression(intercept_lr=0.3)
),
order=[0, 1, 2]
)
metric = metrics.multioutput.MicroAverage(metrics.MAE())
evaluate.progressive_val_score(dataset, model, metric)
MicroAverage(MAE): 12.733525
Methods¶
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x
- y
- kwargs
Returns
self
predict_one
Predict the outputs of features x
.
Parameters
- x
- kwargs
Returns
The predictions.