Skip to content

Cov

Covariance.

Parameters

  • ddof

    Default1

    Delta Degrees of Freedom.

Attributes

  • n

Examples

from river import stats

x = [-2.1,  -1,  4.3]
y = [   3, 1.1, 0.12]

cov = stats.Cov()

for xi, yi in zip(x, y):
    print(cov.update(xi, yi).get())
0.0
-1.044999
-4.286

This class has a revert method, and can thus be wrapped by utils.Rolling:

from river import utils

x = [-2.1,  -1, 4.3, 1, -2.1,  -1, 4.3]
y = [   3, 1.1, .12, 1,    3, 1.1, .12]

rcov = utils.Rolling(stats.Cov(), window_size=3)

for xi, yi in zip(x, y):
    print(rcov.update(xi, yi).get())
0.0
-1.045
-4.286
-1.382
-4.589
-1.415
-4.286

Methods

get

Return the current value of the statistic.

revert
update

Update and return the called instance.

Parameters

  • x
  • y
  • w — defaults to 1.0

update_many

Notes

The outcomes of the incremental and parallel updates are consistent with numpy's batch processing when ddof1.


  1. Wikipedia article on algorithms for calculating variance 

  2. Schubert, E. and Gertz, M., 2018, July. Numerically stable parallel computation of (co-) variance. In Proceedings of the 30th International Conference on Scientific and Statistical Database Management (pp. 1-12).