Sentence classification¶
In this tutorial we will try to predict whether an SMS is a spam or not. To train our model, we will use the SMSSpam
dataset. This dataset is unbalanced, there is only 13.4% spam. Let's look at the data:
from river import datasets
datasets.SMSSpam()
SMS Spam Collection dataset.
The data contains [1;36m5[0m,[1;36m574[0m items and [1;36m1[0m feature [1m([0mi.e. SMS body[1m)[0m. Spam messages represent
[1;36m13.4[0m% of the dataset. The goal is to predict whether an SMS is a spam or not.
Name SMSSpam
Task Binary classification
Samples [1;36m5[0m,[1;36m574[0m
Features [1;36m1[0m
Sparse [3;91mFalse[0m
Path [35m/home/runner/river_data/SMSSpam/[0m[95mSMSSpamCollection[0m
URL [4;94mhttps://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip[0m
Size [1;36m466.71[0m KB
Downloaded [3;92mTrue[0m
from pprint import pprint
X_y = datasets.SMSSpam()
for x, y in X_y:
pprint(x)
print(f'Spam: {y}')
break
{'body': 'Go until jurong point, crazy.. Available only in bugis n great world '
'la e buffet... Cine there got amore wat...\n'}
Spam: False
Let's start by building a simple model like a Naive Bayes classifier. We will first preprocess the sentences with a TF-IDF transform that our model can consume. Then, we will measure the accuracy of our model with the AUC metric. This is the right metric to use when the classes are not balanced. In addition, the Naive Bayes models can perform very well on unbalanced datasets and can be used for both binary and multi-class classification problems.
from river import feature_extraction
from river import naive_bayes
from river import metrics
X_y = datasets.SMSSpam()
model = (
feature_extraction.TFIDF(on='body') |
naive_bayes.BernoulliNB(alpha=0)
)
metric = metrics.ROCAUC()
cm = metrics.ConfusionMatrix()
for x, y in X_y:
y_pred = model.predict_one(x)
if y_pred is not None:
metric.update(y_pred=y_pred, y_true=y)
cm.update(y_pred=y_pred, y_true=y)
model.learn_one(x, y)
metric
ROCAUC: [1;36m93.00[0m%
The confusion matrix:
cm
[3;91mFalse[0m [3;92mTrue[0m
[3;91mFalse[0m [1;36m4[0m,[1;36m809[0m [1;36m17[0m
[3;92mTrue[0m [1;36m102[0m [1;36m645[0m
The results are quite good with this first model.
Since we are working with an imbalanced dataset, we can use the imblearn
module to rebalance the classes of our dataset. For more information about the imblearn
module, you can find a dedicated tutorial here.
from river import imblearn
X_y = datasets.SMSSpam()
model = (
feature_extraction.TFIDF(on='body') |
imblearn.RandomUnderSampler(
classifier=naive_bayes.BernoulliNB(alpha=0),
desired_dist={0: .5, 1: .5},
seed=42
)
)
metric = metrics.ROCAUC()
cm = metrics.ConfusionMatrix()
for x, y in X_y:
y_pred = model.predict_one(x)
if y_pred is not None:
metric.update(y_pred=y_pred, y_true=y)
cm.update(y_pred=y_pred, y_true=y)
model.learn_one(x, y)
metric
ROCAUC: [1;36m94.61[0m%
The imblearn
module improved our results. Not bad! We can visualize the pipeline to understand how the data is processed.
The confusion matrix:
cm
[3;91mFalse[0m [3;92mTrue[0m
[3;91mFalse[0m [1;36m4[0m,[1;36m570[0m [1;36m255[0m
[3;92mTrue[0m [1;36m41[0m [1;36m706[0m
model
TFIDF
TFIDF (
normalize=True
on="body"
strip_accents=True
lowercase=True
preprocessor=None
tokenizer=None
ngram_range=(1, 1)
)
RandomUnderSampler
RandomUnderSampler (
classifier=BernoulliNB (
alpha=0
true_threshold=0.
)
desired_dist={0: 0.5, 1: 0.5}
seed=42
)
BernoulliNB
BernoulliNB (
alpha=0
true_threshold=0.
)
Now let's try to use logistic regression to classify messages. We will use different tips to make my model perform better. As in the previous example, we rebalance the classes of our dataset. The logistics regression will be fed from a TF-IDF.
from river import linear_model
from river import optim
from river import preprocessing
X_y = datasets.SMSSpam()
model = (
feature_extraction.TFIDF(on='body') |
preprocessing.Normalizer() |
imblearn.RandomUnderSampler(
classifier=linear_model.LogisticRegression(
optimizer=optim.SGD(.9),
loss=optim.losses.Log()
),
desired_dist={0: .5, 1: .5},
seed=42
)
)
metric = metrics.ROCAUC()
cm = metrics.ConfusionMatrix()
for x, y in X_y:
y_pred = model.predict_one(x)
metric.update(y_pred=y_pred, y_true=y)
cm.update(y_pred=y_pred, y_true=y)
model.learn_one(x, y)
metric
ROCAUC: [1;36m93.80[0m%
The confusion matrix:
cm
[3;91mFalse[0m [3;92mTrue[0m
[3;91mFalse[0m [1;36m4[0m,[1;36m584[0m [1;36m243[0m
[3;92mTrue[0m [1;36m55[0m [1;36m692[0m
model
TFIDF
TFIDF (
normalize=True
on="body"
strip_accents=True
lowercase=True
preprocessor=None
tokenizer=None
ngram_range=(1, 1)
)
Normalizer
Normalizer (
order=2
)
RandomUnderSampler
RandomUnderSampler (
classifier=LogisticRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.9
)
)
loss=Log (
weight_pos=1.
weight_neg=1.
)
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
desired_dist={0: 0.5, 1: 0.5}
seed=42
)
LogisticRegression
LogisticRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.9
)
)
loss=Log (
weight_pos=1.
weight_neg=1.
)
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
The results of the logistic regression are quite good but still inferior to the naive Bayes model.
Let's try to use word embeddings to improve our logistic regression. Word embeddings allow you to represent a word as a vector. Embeddings are developed to build semantically rich vectors. For instance, the vector which represents the word python should be close to the vector which represents the word programming. We will use spaCy to convert our sentence to vectors. spaCy converts a sentence to a vector by calculating the average of the embeddings of the words in the sentence.
You can download pre-trained embeddings in many languages. We will use English pre-trained embeddings as our SMS are in English.
The command below allows you to download the pre-trained embeddings that spaCy makes available. More informations about spaCy and its installation may be found here here.
python -m spacy download en_core_web_sm
Here, we create a custom transformer to convert an input sentence to a dict of floats. We will integrate this transformer into our pipeline.
import spacy
from river.base import Transformer
class Embeddings(Transformer):
"""My custom transformer, word embedding using spaCy."""
def __init__(self, on: str):
self.on = on
self.embeddings = spacy.load('en_core_web_sm')
def transform_one(self, x, y=None):
return {dimension: xi for dimension, xi in enumerate(self.embeddings(x[self.on]).vector)}
Let's train our logistic regression:
X_y = datasets.SMSSpam()
model = (
Embeddings(on='body') |
preprocessing.Normalizer() |
imblearn.RandomOverSampler(
classifier=linear_model.LogisticRegression(
optimizer=optim.SGD(.5),
loss=optim.losses.Log()
),
desired_dist={0: .5, 1: .5},
seed=42
)
)
metric = metrics.ROCAUC()
cm = metrics.ConfusionMatrix()
for x, y in X_y:
y_pred = model.predict_one(x)
metric.update(y_pred=y_pred, y_true=y)
cm.update(y_pred=y_pred, y_true=y)
model.learn_one(x, y)
metric
ROCAUC: [1;36m91.31[0m%
The confusion matrix:
cm
[3;91mFalse[0m [3;92mTrue[0m
[3;91mFalse[0m [1;36m4[0m,[1;36m537[0m [1;36m290[0m
[3;92mTrue[0m [1;36m85[0m [1;36m662[0m
model
Embeddings
Embeddings (
on="body"
)
Normalizer
Normalizer (
order=2
)
RandomOverSampler
RandomOverSampler (
classifier=LogisticRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.5
)
)
loss=Log (
weight_pos=1.
weight_neg=1.
)
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
desired_dist={0: 0.5, 1: 0.5}
seed=42
)
LogisticRegression
LogisticRegression (
optimizer=SGD (
lr=Constant (
learning_rate=0.5
)
)
loss=Log (
weight_pos=1.
weight_neg=1.
)
l2=0.
l1=0.
intercept_init=0.
intercept_lr=Constant (
learning_rate=0.01
)
clip_gradient=1e+12
initializer=Zeros ()
)
The results of the logistic regression using spaCy embeddings are lower than those obtained with TF-IDF values. We could surely improve the results by cleaning up the text. We could also use embeddings more suited to our dataset. However, on this problem, the logistic regression is not better than the Naive Bayes model. No free lunch today.