iter_sql¶
Iterates over the results from an SQL query.
By default, SQLAlchemy prefetches results. Therefore, even though you can iterate over the resulting rows one by one, the results are in fact loaded in batch. You can modify this behavior by configuring the connection you pass to iter_sql. For instance, you can set the stream_results parameter to True, as explained in SQLAlchemy's documentation. Note, however, that this isn't available for all database engines.
Parameters¶
-
query
Type → str | sqlalchemy.TextClause | sqlalchemy.Select
SQL query to be executed.
-
conn
Type → sqlalchemy.Connection
An SQLAlchemy construct which has an
executemethod. In other words you can pass an engine, a connection, or a session. -
target_name
Type → str | None
Default →
NoneThe name of the target field. If this is
None, thenywill also beNone.
Examples¶
As an example we'll create an in-memory database with SQLAlchemy.
import datetime as dt
import sqlalchemy
engine = sqlalchemy.create_engine('sqlite://')
metadata = sqlalchemy.MetaData()
t_sales = sqlalchemy.Table('sales', metadata,
sqlalchemy.Column('shop', sqlalchemy.String, primary_key=True),
sqlalchemy.Column('date', sqlalchemy.Date, primary_key=True),
sqlalchemy.Column('amount', sqlalchemy.Integer)
)
metadata.create_all(engine)
sales = [
{'shop': 'Hema', 'date': dt.date(2016, 8, 2), 'amount': 20},
{'shop': 'Ikea', 'date': dt.date(2016, 8, 2), 'amount': 18},
{'shop': 'Hema', 'date': dt.date(2016, 8, 3), 'amount': 22},
{'shop': 'Ikea', 'date': dt.date(2016, 8, 3), 'amount': 14},
{'shop': 'Hema', 'date': dt.date(2016, 8, 4), 'amount': 12},
{'shop': 'Ikea', 'date': dt.date(2016, 8, 4), 'amount': 16}
]
with engine.connect() as conn:
_ = conn.execute(t_sales.insert(), sales)
conn.commit()
We can now query the database. We will set amount to be the target field.
from river import stream
with engine.connect() as conn:
query = sqlalchemy.sql.select(t_sales)
dataset = stream.iter_sql(query, conn, target_name='amount')
for x, y in dataset:
print(x, y)
{'shop': 'Hema', 'date': datetime.date(2016, 8, 2)} 20
{'shop': 'Ikea', 'date': datetime.date(2016, 8, 2)} 18
{'shop': 'Hema', 'date': datetime.date(2016, 8, 3)} 22
{'shop': 'Ikea', 'date': datetime.date(2016, 8, 3)} 14
{'shop': 'Hema', 'date': datetime.date(2016, 8, 4)} 12
{'shop': 'Ikea', 'date': datetime.date(2016, 8, 4)} 16
This also with raw SQL queries.
with engine.connect() as conn:
query = "SELECT * FROM sales WHERE shop = 'Hema'"
dataset = stream.iter_sql(query, conn, target_name='amount')
for x, y in dataset:
print(x, y)
{'shop': 'Hema', 'date': '2016-08-02'} 20
{'shop': 'Hema', 'date': '2016-08-03'} 22
{'shop': 'Hema', 'date': '2016-08-04'} 12