ADWINBaggingClassifier¶
ADWIN Bagging classifier.
ADWIN Bagging 1 is the online bagging method of Oza and Russell 2 with the addition of the ADWIN
algorithm as a change detector. If concept drift is detected, the worst member of the ensemble (based on the error estimation by ADWIN) is replaced by a new (empty) classifier.
Parameters¶
-
model
Type → base.Classifier
The classifier to bag.
-
n_models
Default →
10
The number of models in the ensemble.
-
seed
Type → int | None
Default →
None
Random number generator seed for reproducibility.
Attributes¶
- models
Examples¶
from river import datasets
from river import ensemble
from river import evaluate
from river import linear_model
from river import metrics
from river import optim
from river import preprocessing
dataset = datasets.Phishing()
model = ensemble.ADWINBaggingClassifier(
model=(
preprocessing.StandardScaler() |
linear_model.LogisticRegression()
),
n_models=3,
seed=42
)
metric = metrics.F1()
evaluate.progressive_val_score(dataset, model, metric)
F1: 87.65%
Methods¶
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
- kwargs
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Averages the predictions of each classifier.
Parameters
- x
- kwargs
-
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. "New ensemble methods for evolving data streams." In 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. ↩
-
Oza, N., Russell, S. "Online bagging and boosting." In: Artificial Intelligence and Statistics 2001, pp. 105–112. Morgan Kaufmann, 2001. ↩