ProbabilisticClassifierChain¶
Probabilistic Classifier Chains.
The Probabilistic Classifier Chains (PCC) 1 is a Bayes-optimal method based on the Classifier Chains (CC).
Consider the concept of chaining classifiers as searching a path in a binary tree whose leaf nodes are associated with a label \(y \in Y\). While CC searches only a single path in the aforementioned binary tree, PCC looks at each of the \(2^l\) paths, where \(l\) is the number of labels. This limits the applicability of the method to data sets with a small to moderate number of labels. The authors recommend no more than about 15 labels for real-world applications.
Parameters¶
-
model
Type โ base.Classifier
Examples¶
from river import linear_model
from river import metrics
from river import multioutput
from river.datasets import synth
dataset = synth.Logical(seed=42, n_tiles=100)
model = multioutput.ProbabilisticClassifierChain(
model=linear_model.LogisticRegression()
)
metric = metrics.multioutput.MicroAverage(metrics.Jaccard())
for x, y in dataset:
y_pred = model.predict_one(x)
y_pred = {k: y_pred.get(k, 0) for k in y}
metric.update(y, y_pred)
model.learn_one(x, y)
metric
MicroAverage(Jaccard): 51.84%
Methods¶
learn_one
Update the model with a set of features x
and the labels y
.
Parameters
- x
- y
- kwargs
predict_one
Predict the labels of a set of features x
.
Parameters
- x โ 'dict'
- kwargs
Returns
dict[FeatureName, bool]: The predicted labels.
predict_proba_one
Predict the probability of each label appearing given dictionary of features x
.
Parameters
- x
- kwargs
Returns
A dictionary that associates a probability which each label.
-
Cheng, W., Hรผllermeier, E., & Dembczynski, K. J. (2010). Bayes optimal multilabel classification via probabilistic classifier chains. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 279-286). ↩