GaussianNB¶
Gaussian Naive Bayes.
A Gaussian distribution \(G_{cf}\) is maintained for each class \(c\) and each feature \(f\). Each Gaussian is updated using the amount associated with each feature; the details can be be found in proba.Gaussian
. The joint log-likelihood is then obtained by summing the log probabilities of each feature associated with each class.
Examples¶
from river import naive_bayes
from river import stream
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
model = naive_bayes.GaussianNB()
for x, y in stream.iter_array(X, Y):
model.learn_one(x, y)
model.predict_one({0: -0.8, 1: -1})
1
Methods¶
joint_log_likelihood
joint_log_likelihood_many
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x — 'dict'
- y — 'base.typing.ClfTarget'
p_class
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Return probabilities using the log-likelihoods.
Parameters
- x — 'dict'