Skip to content

StatImputer

Replaces missing values with a statistic.

This transformer allows you to replace missing values with the value of a running statistic. During a call to learn_one, for each feature, a statistic is updated whenever a numeric feature is observed. When transform_one is called, each feature with a None value is replaced with the current value of the corresponding statistic.

Parameters

  • imputers

    A list of tuples where each tuple has two elements. The first elements is a feature name and the second value is an instance of stats.base.Univariate. The second value can also be an arbitrary value, such as -1, in which case the missing values will be replaced with it.

Examples

from river import preprocessing
from river import stats

For numeric data, we can use a stats.Mean()` to replace missing values by the running average of the previously seen values:

X = [
    {'temperature': 1},
    {'temperature': 8},
    {'temperature': 3},
    {'temperature': None},
    {'temperature': 4}
]

imp = preprocessing.StatImputer(('temperature', stats.Mean()))

for x in X:
    imp.learn_one(x)
    print(imp.transform_one(x))
{'temperature': 1}
{'temperature': 8}
{'temperature': 3}
{'temperature': 4.0}
{'temperature': 4}

For discrete/categorical data, a common practice is to stats.Mode to replace missing values by the most commonly seen value:

X = [
    {'weather': 'sunny'},
    {'weather': 'rainy'},
    {'weather': 'sunny'},
    {'weather': None},
    {'weather': 'rainy'},
    {'weather': 'rainy'},
    {'weather': None}
]

imp = preprocessing.StatImputer(('weather', stats.Mode()))

for x in X:
    imp.learn_one(x)
    print(imp.transform_one(x))
{'weather': 'sunny'}
{'weather': 'rainy'}
{'weather': 'sunny'}
{'weather': 'sunny'}
{'weather': 'rainy'}
{'weather': 'rainy'}
{'weather': 'rainy'}

You can also choose to replace missing values with a constant value, as so:

imp = preprocessing.StatImputer(('weather', 'missing'))

for x in X:
    imp.learn_one(x)
    print(imp.transform_one(x))
{'weather': 'sunny'}
{'weather': 'rainy'}
{'weather': 'sunny'}
{'weather': 'missing'}
{'weather': 'rainy'}
{'weather': 'rainy'}
{'weather': 'missing'}

Multiple imputers can be defined by providing a tuple for each feature which you want to impute:

X = [
    {'weather': 'sunny', 'temperature': 8},
    {'weather': 'rainy', 'temperature': 3},
    {'weather': 'sunny', 'temperature': None},
    {'weather': None, 'temperature': 4},
    {'weather': 'snowy', 'temperature': -4},
    {'weather': 'snowy', 'temperature': -3},
    {'weather': 'snowy', 'temperature': -3},
    {'weather': None, 'temperature': None}
]

imp = preprocessing.StatImputer(
    ('temperature', stats.Mean()),
    ('weather', stats.Mode())
)

for x in X:
    imp.learn_one(x)
    print(imp.transform_one(x))
{'weather': 'sunny', 'temperature': 8}
{'weather': 'rainy', 'temperature': 3}
{'weather': 'sunny', 'temperature': 5.5}
{'weather': 'sunny', 'temperature': 4}
{'weather': 'snowy', 'temperature': -4}
{'weather': 'snowy', 'temperature': -3}
{'weather': 'snowy', 'temperature': -3}
{'weather': 'snowy', 'temperature': 0.8333}

A sophisticated way to go about imputation is condition the statistics on a given feature. For instance, we might want to replace a missing temperature with the average temperature of a particular weather condition. As an example, consider the following dataset where the temperature is missing, but not the weather condition:

X = [
    {'weather': 'sunny', 'temperature': 8},
    {'weather': 'rainy', 'temperature': 3},
    {'weather': 'sunny', 'temperature': None},
    {'weather': 'rainy', 'temperature': 4},
    {'weather': 'sunny', 'temperature': 10},
    {'weather': 'sunny', 'temperature': None},
    {'weather': 'sunny', 'temperature': 12},
    {'weather': 'rainy', 'temperature': None}
]

Each missing temperature can be replaced with the average temperature of the corresponding weather condition as so:

from river import compose

imp = compose.Grouper(
    preprocessing.StatImputer(('temperature', stats.Mean())),
    by='weather'
)

for x in X:
    imp.learn_one(x)
    print(imp.transform_one(x))
{'weather': 'sunny', 'temperature': 8}
{'weather': 'rainy', 'temperature': 3}
{'weather': 'sunny', 'temperature': 8.0}
{'weather': 'rainy', 'temperature': 4}
{'weather': 'sunny', 'temperature': 10}
{'weather': 'sunny', 'temperature': 9.0}
{'weather': 'sunny', 'temperature': 12}
{'weather': 'rainy', 'temperature': 3.5}

Note that you can also create a Grouper with the * operator:

imp = preprocessing.StatImputer(('temperature', stats.Mean())) * 'weather'

Methods

learn_one

Update with a set of features x.

A lot of transformers don't actually have to do anything during the learn_one step because they are stateless. For this reason the default behavior of this function is to do nothing. Transformers that however do something during the learn_one can override this method.

Parameters

  • x'dict'

transform_one

Transform a set of features x.

Parameters

  • x'dict'

Returns

dict: The transformed values.