HistogramSplitter¶
Numeric attribute observer for classification tasks that discretizes features using histograms.
Parameters¶
-
n_bins
Type → int
Default →
256The maximum number of bins in the histogram.
-
n_splits
Type → int
Default →
32The number of split points to evaluate when querying for the best split candidate.
Attributes¶
-
is_numeric
Determine whether or not the splitter works with numerical features.
-
is_target_class
Check on which kind of learning task the splitter is designed to work. If
True, the splitter works with classification trees, otherwise it is designed for regression trees.
Methods¶
best_evaluated_split_suggestion
Get the best split suggestion given a criterion and the target's statistics.
Parameters
- criterion — 'SplitCriterion'
- pre_split_dist — 'list | dict'
- att_idx — 'base.typing.FeatureName'
- binary_only — 'bool'
Returns
BranchFactory: Suggestion of the best attribute split.
cond_proba
Get the probability for an attribute value given a class.
Parameters
- att_val
- target_val — 'base.typing.ClfTarget'
Returns
float: Probability for an attribute value given a class.
update
Update statistics of this observer given an attribute value, its target value and the weight of the instance observed.
Parameters
- att_val
- target_val — 'base.typing.Target'
- sample_weight — 'float'