GaussianSplitterΒΆ
Numeric attribute observer for classification tasks that is based on Gaussian estimators.
The distribution of each class is approximated using a Gaussian distribution. Hence, the probability density function can be easily calculated.
ParametersΒΆ
-
n_splits (int) β defaults to
10The number of partitions to consider when querying for split candidates.
AttributesΒΆ
-
is_numeric
Determine whether or not the splitter works with numerical features.
-
is_target_class
Check on which kind of learning task the splitter is designed to work. If
True, the splitter works with classification trees, otherwise it is designed for regression trees.
MethodsΒΆ
best_evaluated_split_suggestion
Get the best split suggestion given a criterion and the target's statistics.
Parameters
- criterion (river.tree.split_criterion.base.SplitCriterion)
- pre_split_dist (Union[List, Dict])
- att_idx (Hashable)
- binary_only (bool)
Returns
BranchFactory: Suggestion of the best attribute split.
cond_proba
Get the probability for an attribute value given a class.
Parameters
- att_val
- target_val (Union[bool, str, int])
Returns
float: Probability for an attribute value given a class.
update
Update statistics of this observer given an attribute value, its target value and the weight of the instance observed.
Parameters
- att_val
- target_val (Union[bool, str, int, numbers.Number])
- sample_weight (float)